Tuning electronic and magnetic properties of wurtzite ZnO nanosheets by surface hydrogenation.

نویسندگان

  • Qing Tang
  • Yafei Li
  • Zhen Zhou
  • Yongsheng Chen
  • Zhongfang Chen
چکیده

Through density functional theory computations, we systematically investigated the structural, electronic, and magnetic properties as well as the relative stabilities of fully and partially hydrogenated ZnO nanosheets. Unlike bare ZnO nanosheets terminating with polar {0001} surfaces, their hydrogenated counterparts preserve the initial wurtzite configuration. Full hydrogenation is more favorable energetically for thinner ZnO nanosheets, whereas semihydrogenation at O sites is preferred for thicker ones. Moreover, semiconductor --> half-metal --> metal transition occurs with nonmagnetic --> magnetic transfer upon adopting surface hydrogenation and increasing sheet thickness. The predicted diverse and tunable electronic and magnetic properties endow ZnO nanosheets potential applications in electronics and spintronics.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Effect of Annealing, Synthesis Temperature and Structure on Photoluminescence Properties of Eu-Doped ZnO Nanorods

In this study un-doped and Eu-doped ZnO nanorods and microrads were fabricated by Chemical Vapor Deposition (CVD) method. The effects of annealing, synthesis temperature and structure on structural and photoluminescence properties of Eu-doped ZnO samples were studied in detail. Prepared samples were characterized using X-Ray diffraction (XRD), scanning electron microscopy (SEM), particle size a...

متن کامل

Electronic and Optical Properties of Size-Controlled ZnO Nanoparticles Synthesized by a Facile Chemical Approach

Facile low-temperature chemical route for the synthesis of ZnO nanoparticles is reported in this paper. Morphologically uniform and spherical shape with an average particle size of 8.8 nm and wurtzite phase with the crystalline structure of as-synthesized ZnO nanoparticles were confirmed by X-Ray Diffraction (XRD), Scanning Electron Microscopy (SEM) and Transmissi...

متن کامل

C-doped ZnO nanowires: electronic structures, magnetic properties, and a possible spintronic device.

Electronic structures, magnetic properties, and spin-dependent electron transport characteristics of C-doped ZnO nanowires have been investigated via first-principles method based on density functional theory and nonequilibrium techniques of Green's functions. Our calculations show that the doping of carbon atoms in a ZnO nanowire could induce strong magnetic moments in the wire, and the electr...

متن کامل

Anisotropic epitaxial ZnO/CdO core/shell heterostructure nanorods

Various surface structures and polarities of one-dimensional nanostructures offer additional control in synthesizing heterostructures suitable for optoelectronic and electronic applications. In this work, we report synthesis and characterization of ZnO-CdO nanorod-based heterostructures grown on a-plane sapphire. The heterojunction formed on the sidewall surface of the nanorod shows that wurtzi...

متن کامل

First-principles study of the electronic and optical properties of ZnO and ZnS wurtzite nanoclusters

Zinc oxide (ZnO) and zinc sulphide (ZnS) nanostructures have emerged in recent years as promising candidates in the development of nanoscale electronic and photonic devices. Theoretical studies on the properties of nanosized wurtzite ZnO and ZnS are rather scarce and their electronic and optical properties are largely unknown to date. As a part of a more general theoretical effort aimed at the ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • ACS applied materials & interfaces

دوره 2 8  شماره 

صفحات  -

تاریخ انتشار 2010